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Let £, be a real normed vector space and £2 a real Banach space. S. M. Ulam
posed the problem: When does a linear mapping near an approximately additive
mapping f: £, - £2 exist? We give a new generalized solution to Ulam's problem
for I/t-additive mappings. Some relations with the asymptotic differentiability are
also indicated. '1) 1993 Academic Press, Inc.

INTRODUCTION

Let £1 be a real normed vector space and £2 a real Banach space.
Assume that f: £1 -+ £2 is an approximately additive mapping. S. M.

Ulam posed the problem: Give conditions in order for a linear mapping
near an approximately additive mapping to exist [12, 13].

In 1941 D. H. Hyers [6] considered approximately additive mappings
f: £1 -+ £2 satisfying

Ilf(x+ y)- f(x)- f(y)1I <E

for all x, y E £1'
He proved that the limit

T(x)= lim 2-'i(2nx)

(1)

(2)

exists for all x E £] and that T: £1 -+ £2 is the unique additive mapping
satisfying

Ilf(x)- T(x)11 ~E.
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No continuity conditions are required for this result, but if fUx) is
continuous in the real variable t for each fixed x, then the mapping T given
by (2) is linear.

In 1978, a generalized solution to Ulam's problem for approximately
linear mappings was given by Th. M. Rassias [9].

He considered a mapping f: E[ ~ E 2 satisfying the condition of
continuity of f(tx) in t for each fixed x and assumed the weaker condition

Ilf(x+ y)- f(x)- f(y)11 ~8(llxIIP+ flyIIP), for any x, YEE1 , (3)

where 8 ~ 0 and 0 ~ p < 1.
He proved that the limit (2) exists for all x EEl and that T: E) --+ E 2 is

the unique linear mapping satisfying

2fJ
II f(x) - T(x)fl ~ 2_ 2P Ilxll p.

The proof given in [9] works also when p < O. Th. M. Rassias [10]
posed the problem whether such a theorem can also be proved for p ~ 1.

In [3] Z. Gajda followed a similar approach as in [9] and obtained a
solution of this problem for p> 1.

His result states that the mapping T: E[ --+ E 2 defined by

T(x) = lim 2nf(2 ~nx)
n- x

is the unique additive mapping satisfying

28
Ilf(x)- T(x)1I ~2P_21IxIIP.

(4 )

(5)

The problem when p= 1 is still open (cf. R. Ger [4]). Let E 1 be a real
normed vector space and E 2 a real Banach space. We introduce the
following notion.

DEFINITION. A mapping f: E 1~ E2 is ljJ-additive if and only if there
exist 8 ~ 0 and a function 1jJ: R + --+ R + such that lim, ~ oo(IjJ(t)Jt) = 0 and

Ilf(x + y) - f(x) - f(y)11 ~ 8[1jJ(llxll) + 1jJ(llyll )], for all x, y EEl'

THEOREM 1. Consider E 1 to be a real normed vector space E2 a real
Banach space and let f: E 1~ E2 be a mapping such that fUx) is continuous
in t for each fixed x.

If f is ljJ-additive and IjJ satisfies

(1) IjJUs) ~ ljJ(t) ljJ(s), for all t, SE R+

(2) 1jJ(t) < t,for all t> 1
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then there exists a unique linear mapping T: £1 -+ £2 such that
II f(x) - T(x)11 ~ (29/(2 -1/1(2))) I/I( Ilxll ),/or all x E £1'

Proof We will show that

(6)

for any positive integer n, and for all x E £1' The proof of (6) follows by
induction on n. For n = I by I/I-additivity of f we have

Ilf(2x)-2f(x)11 ~291/1(llxll),

which implies

Ilf(~X) _ f(x) II ~ 91/1( Ilxll).

Assume now that (6) holds for n and we want to prove it for the case
(n + I). Replacing x by 2x in (6) we obtain

Ilf(2~~2X)_ f(2x) II ~[9}:~ (1/I;2)rJ 1/I(21Ixll)·

Since 1/1(2 Ilxll) ~ 1/1(2) 1/I(llxll) we get

Ilf(2~: IX) _ f(2x) II ~ [9 ~~~ (1/1;2)) mJ 1/1(2) 1/I(lIxll). (7)

Multiplying both sides of (7) by 1/2 we obtain

Now, using the triangle inequality we deduce

I/2}+1 [/(2"+lX)]-f(X)1I

~ 112"1+ I [/(2" +1x)] - ~ [/(2x)] II + II ~ [/(2x)] - f(x) II

~[e mtl (1/I~2)rJI/I("x'I)+el/l('lx,,)

=91/1(llxll) [I + m~1 (1/I;2)rl which proves (6).
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112 nl
+ I [f(2

n
+ IX)] - f(x) II ~ 8VJ(llxll) [ 1 +m~ 1 (

VJi2)rJ
~ _28-c-VJ_(II_x__11 )
~ 2-VJ(2)'

For m>n>O we have

II 21m [f(2
m

x)] - ;n [f(2
n
x)] II

= ;n 112ml-n [f(2
m

x)] - [f(2
n
x)] II

= ;n II ;, [f(2'y)] - f(y) II, where r = m - nand y = 2nx.

Hence,

II 21m [f(2
m

x)] - ;n [f(rx)] II

~ ~ 8 [2 VJ ( II yll )J =~ 8 [2VJ (2
n

Ilxll )J
~r 2-VJ(2) 2n 2-VJ(2)

~ ~ 8 [2(VJ(2
n
) VJ( Ilxll )J ~ (VJ(2 ))n 82VJ( Ilxll) .

~2n 2-VJ(2) ~ 2 2-VJ(2)

But since limn ~oa(VJ(2)/2t = 0, we have that {( 1/2n)[f(2nx)] }ne N is a
Cauchy sequence.

Set T(x)=limn~oa(l/2n)[f(2nx)], for all xEE I •

We will prove that T is additive. For this

II f[2 n(x + y)] - f(2 nx) - f(2 ny)1I ~ 8[VJ( 112nxll) + VJ( 112nyll)]

= 8[VJ(2n Ilxll) +VJ(2 n Ilyll)] ~ 8VJ(2 n )[VJ(llxll) +VJ(llyll )],

which implies that

(1/2n) II f[2 n(x + y)] - f(2 nx) - f(2 ny )11 ~ (VJ(2 n)/2n) 8[VJ( IIxll) + VJ( II YII)]

~ (VJ(2 )/2 t 8[VJ( II xii) + VJ(l1 yll )].

However, limn ~ oa(VJ(2)/2t = 0, thus

. I
}~~ 2n II f[2 n(x + y)] - f(2nx) - f(2 ny) II = o.
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T(x + y) = T(x) + T(y), for all x, y E £[. (8)

Because of (8) it follows that T(rx) = rT(x) for any rational number r.
Using the same argument as in [9J, we obtain that T(ax) = aT(x) for

any real value of a. Hence T is a linear mapping.
From 11(1/2n )f(2nx)- f(x)1I ~28t/J(llxll)/(2-t/J(2» taking the limit as

n -+ OC! we obtain

(9)

Claim that T is the unique such linear mapping.
Suppose that there exists another one, denoted by g: £ I -+ £2' satisfying

(10)

From (9) and (10) we get

II T(x) - g(x)1I ~ IIT(x) - f(x)1I + II f(x) - g(x)1I

2Bt/J(llxll) 2B 1 t/Jl(lIxll)
~ 2-t/J(2) + 2-t/J1(2) .

Then,

IIT(x)- g(x)1I = II~ T(nX)-~ g(nx) II
t/J(n) 28t/J( Ilxll) t/J len) 28[ t/J l(IIxll),;:: -- +------,-:--

'" n 2-t/J(2) n 2-t/Jl(2)'

for every positive integer n > 1.

However, limn ~ 00 (t/J(n )In) = 0 = limn ~,.Jt/J I(n )In). Therefore T(x) == g(x)
for all x E £ I' Q.E.D.

Remarks. (I) If t/J( t) = tP with 0 ~ p < I then from Theorem I, we
obtain the following result proved in [9].

THEOREM 2. Consider £1' £2 to be two Banach spaces, and let
f: £1 -+ £2 be a mapping such that f(tx) is continuous in t for each fixed x.

Assume that there exist 8 ~°and p E [0, I) such that

Ilf(x+ y)- f(x)- f(y)11 ~B[llxIIP+ IlyIIPJ, for any x, yE£I'
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Then there exists a unique linear mapping T: £, -+ £2 such that

28
Ilf(x)- T(x)11 ~-2-llxIIP,2- P

(2) If p < 0 and

for any XE£I'

if t = 0

if t>O

then from Theorem 1 we obtain a generalization of Theorem 2 for p a
negative real number.

The mapping T defined by Theorem 1 has some remarkable properties.

(i) If f(S) is bounded, where S={XE£llllxll=1} then T is
continuous.

Indeed, this is a consequence of the inequalities

II T(x)1I ~ Ilf(x)11 + II T(x) - f(x)11

28
~ Ilf(x)11 +2-1/1(2) 1/I(lIxll)

28
~ Ilf(x)1I + 2 -1/1(2) I/I(l), for all XE S.

(ii) In [8] the concept of an asymptotically linear operator is defined.
A mappingf: £, -+ £2 is asymptotically linear if there exists a continuous

linear operator u: £1 -+ £2 such that lim IIxll ~ +oc( II f(x) - u(x)II/llxll) = O. In
this case we say that u is the asymptotic derivative of f

Thus, when the operator T defined by Theorem 1 is continuous we have
that f is asymptotically linear and T is its asymptotic derivative. Indeed, we
have

lim Ilf(x)-T(x)ll~ 28 lim ~1(llxll)=O.

Ilxll ~ +oc Ilxll 2 -1/1(2) IIxll ~ +x IIxll

The fact that T is the asymptotic derivative of f is very important since
in this case T conserves some properties of f as, for example,

(a) iffis compact then Tis compact [8],

(b) iff is an IX-contraction with respect to a measure of noncompact
ness IX, then T has the same property [7].

The asymptotic derivative is important in the study of fixed points and
in the bifurcation theory [1, 2, 8].
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Also, the fact that T is the asymptotic derivative of f implies that f is
quasibounded in the sense of the definition given by Granas in [5].

(iii) Suppose now that E 1 = E2 = E, where E is a Banach space ordered
by a pointed closed convex cone K.

If K is invariant with respect to 1, that is, f(x) E K for all x E K, then the
operator T defined by Theorem I is positive, that is, T(K) ~ K (in this case
T is monotone increasing). Moreover, if in this case T is continuous we
have that f is asymptotically linear with respect to K and T is its
asymptotic derivative along K.

Denote by r( T) the spectral radius of T and suppose that f(K) ~ K.
Iff is compact on every bounded set of K, T is continuous, and r( T) < I

then f has a fixed point x * E K.
This result is a consequence of [2, Theorem 8.8, p. 94].
So, an interesting problem is to study the spectral radius of T.
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