On the Hyers-Ulam Stability of ψ-Additive Mappings

George Isac
Department of Mathematics, Royal Military College, St-Jean, Québec J0J 1R0, Canada
AND
Themistocles M. Rassias
Department of Mathematics, University of La Verne, P.O. Box 51105, Kifissia, Athens, 14510, Greece
Communicated by Frank Deutsch

Received June 4, 1991; accepted in revised form October 14, 1991

Let E_{1} be a real normed vector space and E_{2} a real Banach space. S. M. Ulam posed the problem: When does a linear mapping near an approximately additive mapping $f: E_{1} \rightarrow E_{2}$ exist? We give a new generalized solution to Ulam's problem for ψ-additive mappings. Some relations with the asymptotic differentiability are also indicated. © 1993 Academic Press, Inc.

Introduction

Let E_{1} be a real normed vector space and E_{2} a real Banach space.
Assume that $f: E_{1} \rightarrow E_{2}$ is an approximately additive mapping. S. M. Ulam posed the problem: Give conditions in order for a linear mapping near an approximately additive mapping to exist [12,13].

In 1941 D. H. Hyers [6] considered approximately additive mappings $f: E_{1} \rightarrow E_{2}$ satisfying

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\|<\varepsilon \tag{1}
\end{equation*}
$$

for all $x, y \in E_{1}$.
He proved that the limit

$$
\begin{equation*}
T(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right) \tag{2}
\end{equation*}
$$

exists for all $x \in E_{1}$ and that $T: E_{1} \rightarrow E_{2}$ is the unique additive mapping satisfying

$$
\|f(x)-T(x)\| \leqslant \varepsilon .
$$

No continuity conditions are required for this result, but if $f(t x)$ is continuous in the real variable t for each fixed x, then the mapping T given by (2) is linear.
In 1978, a generalized solution to Ulam's problem for approximately linear mappings was given by Th. M. Rassias [9].

He considered a mapping $f: E_{1} \rightarrow E_{2}$ satisfying the condition of continuity of $f(t x)$ in t for each fixed x and assumed the weaker condition

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant \theta\left(\|x\|^{p}+\|y\|^{p}\right), \quad \text { for any } \quad x, y \in E_{1} \tag{3}
\end{equation*}
$$

where $\theta \geqslant 0$ and $0 \leqslant p<1$.
He proved that the limit (2) exists for all $x \in E_{1}$ and that $T: E_{1} \rightarrow E_{2}$ is the unique linear mapping satisfying

$$
\|f(x)-T(x)\| \leqslant \frac{2 \theta}{2-2^{p}}\|x\|^{p} .
$$

The proof given in [9] works also when $p<0$. Th. M. Rassias [10] posed the problem whether such a theorem can also be proved for $p \geqslant 1$.

In [3] Z. Gajda followed a similar approach as in [9] and obtained a solution of this problem for $p>1$.

His result states that the mapping $T: E_{1} \rightarrow E_{2}$ defined by

$$
\begin{equation*}
T(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(2^{-n} x\right) \tag{4}
\end{equation*}
$$

is the unique additive mapping satisfying

$$
\begin{equation*}
\|f(x)-T(x)\| \leqslant \frac{2 \theta}{2^{p}-2}\|x\|^{p} . \tag{5}
\end{equation*}
$$

The problem when $p=1$ is still open (cf. R. Ger [4]). Let E_{1} be a real normed vector space and E_{2} a real Banach space. We introduce the following notion.

Definition. A mapping $f: E_{1} \rightarrow E_{2}$ is ψ-additive if and only if there exist $\theta \geqslant 0$ and a function $\psi: R_{+} \rightarrow R_{+}$such that $\lim _{t \rightarrow \infty}(\psi(t) / t)=0$ and

$$
\|f(x+y)-f(x)-f(y)\| \leqslant \theta[\psi(\|x\|)+\psi(\|y\|)], \quad \text { for all } \quad x, y \in E_{1}
$$

Theorem 1. Consider E_{1} to be a real normed vector space E_{2} a real Banach space and let $f: E_{1} \rightarrow E_{2}$ be a mapping such that $f(t x)$ is continuous in t for each fixed x.

If f is ψ-additive and ψ satisfies
(1) $\psi(t s) \leqslant \psi(t) \psi(s)$, for all $t, s \in R_{+}$
(2) $\psi(t)<t$, for all $t>1$
then there exists a unique linear mapping $T: E_{1} \rightarrow E_{2}$ such that $\|f(x)-T(x)\| \leqslant(2 \theta /(2-\psi(2))) \psi(\|x\|)$, for all $x \in E_{1}$.

Proof. We will show that

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-f(x)\right\| \leqslant\left[\theta \sum_{m=0}^{n-1}\left(\frac{\psi(2)}{2}\right)^{m}\right] \psi(\|x\|) \tag{6}
\end{equation*}
$$

for any positive integer n, and for all $x \in E_{1}$. The proof of (6) follows by induction on n. For $n=1$ by ψ-additivity of f we have

$$
\|f(2 x)-2 f(x)\| \leqslant 2 \theta \psi(\|x\|)
$$

which implies

$$
\left\|\frac{f(2 x)}{2}-f(x)\right\| \leqslant \theta \psi(\|x\|) .
$$

Assume now that (6) holds for n and we want to prove it for the case $(n+1)$. Replacing x by $2 x$ in (6) we obtain

$$
\left\|\frac{f\left(2^{n} \cdot 2 x\right)}{2^{n}}-f(2 x)\right\| \leqslant\left[\theta \sum_{m=0}^{n-1}\left(\frac{\psi(2)}{2}\right)^{m}\right] \psi(2\|x\|) .
$$

Since $\psi(2\|x\|) \leqslant \psi(2) \psi(\|x\|)$ we get

$$
\begin{equation*}
\left\|\frac{f\left(2^{n+1} x\right)}{2^{n}}-f(2 x)\right\| \leqslant\left[\theta \sum_{m=0}^{n-1}\left(\frac{\psi(2)}{2}\right)^{m}\right] \psi(2) \psi(\|x\|) . \tag{7}
\end{equation*}
$$

Multiplying both sides of (7) by $1 / 2$ we obtain

$$
\left\|\frac{f\left(2^{n+1} x\right)}{2^{n+1}}-\frac{f(2 x)}{2}\right\| \leqslant\left[\theta \sum_{m=0}^{n}\left(\frac{\psi(2)}{2}\right)^{m}\right] \psi(\|x\|)
$$

Now, using the triangle inequality we deduce

$$
\begin{aligned}
& \left\|\frac{1}{2^{n+1}}\left[f\left(2^{n+1} x\right)\right]-f(x)\right\| \\
& \quad \leqslant\left\|\frac{1}{2^{n+1}}\left[f\left(2^{n+1} x\right)\right]-\frac{1}{2}[f(2 x)]\right\|+\left\|\frac{1}{2}[f(2 x)]-f(x)\right\| \\
& \quad \leqslant\left[\theta \sum_{m=1}^{n}\left(\frac{\psi(2)}{2}\right)^{m}\right] \psi(\|x\|)+\theta \psi(\|x\|) \\
& \quad=\theta \psi(\|x\|)\left[1+\sum_{m=1}^{n}\left(\frac{\psi(2)}{2}\right)^{m}\right], \quad \text { which proves }(6)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left\|\frac{1}{2^{n+1}}\left[f\left(2^{n+1} x\right)\right]-f(x)\right\| & \leqslant \theta \psi(\|x\|)\left[1+\sum_{m=1}^{\infty}\left(\frac{\psi(2)}{2}\right)^{m}\right] \\
& \leqslant \frac{2 \theta \psi(\|x\|)}{2-\psi(2)} .
\end{aligned}
$$

For $m>n>0$ we have

$$
\begin{aligned}
\| \frac{1}{2^{m}} & {\left[f\left(2^{m} x\right)\right]-\frac{1}{2^{n}}\left[f\left(2^{n} x\right)\right] \| } \\
& =\frac{1}{2^{n}}\left\|\frac{1}{2^{m-n}}\left[f\left(2^{m} x\right)\right]-\left[f\left(2^{n} x\right)\right]\right\| \\
& =\frac{1}{2^{n}}\left\|\frac{1}{2^{r}}\left[f\left(2^{r} y\right)\right]-f(y)\right\|, \quad \text { where } \quad r=m-n \text { and } y=2^{n} x .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\| \frac{1}{2^{m}} & {\left[f\left(2^{m} x\right)\right]-\frac{1}{2^{n}}\left[f\left(2^{n} x\right)\right] \| } \\
& \leqslant \frac{1}{2^{n}} \theta\left[\frac{2 \psi(\|y\|)}{2-\psi(2)}\right]=\frac{1}{2^{n}} \theta\left[\frac{2 \psi\left(2^{n}\|x\|\right)}{2-\psi(2)}\right] \\
& \leqslant \frac{1}{2^{n}} \theta\left[\frac{2\left(\psi\left(2^{n}\right)\right) \psi(\|x\|)}{2-\psi(2)}\right] \leqslant\left(\frac{\psi(2)}{2}\right)^{n} \theta \frac{2 \psi(\|x\|)}{2-\psi(2)} .
\end{aligned}
$$

But since $\lim _{n \rightarrow \infty}(\psi(2) / 2)^{n}=0$, we have that $\left\{\left(1 / 2^{n}\right)\left[f\left(2^{n} x\right)\right]\right\}_{n \in N}$ is a Cauchy sequence.

Set $T(x)=\lim _{n \rightarrow \infty}\left(1 / 2^{n}\right)\left[f\left(2^{n} x\right)\right]$, for all $x \in E_{1}$.
We will prove that T is additive. For this

$$
\begin{aligned}
& \left\|f\left[2^{n}(x+y)\right]-f\left(2^{n} x\right)-f\left(2^{n} y\right)\right\| \leqslant \theta\left[\psi\left(\left\|2^{n} x\right\|\right)+\psi\left(\left\|2^{n} y\right\|\right)\right] \\
& \quad=\theta\left[\psi\left(2^{n}\|x\|\right)+\psi\left(2^{n}\|y\|\right)\right] \leqslant \theta \psi\left(2^{n}\right)[\psi(\|x\|)+\psi(\|y\|)]
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\left(1 / 2^{n}\right)\left\|f\left[2^{n}(x+y)\right]-f\left(2^{n} x\right)-f\left(2^{n} y\right)\right\| & \leqslant\left(\psi\left(2^{n}\right) / 2^{n}\right) \theta[\psi(\|x\|)+\psi(\|y\|)] \\
& \leqslant(\psi(2) / 2)^{n} \theta[\psi(\|x\|)+\psi(\|y\|)] .
\end{aligned}
$$

However, $\lim _{n \rightarrow \infty}(\psi(2) / 2)^{n}=0$, thus

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|f\left[2^{n}(x+y)\right]-f\left(2^{n} x\right)-f\left(2^{n} y\right)\right\|=0
$$

Therefore

$$
\begin{equation*}
T(x+y)=T(x)+T(y), \quad \text { for all } \quad x, y \in E_{1} \tag{8}
\end{equation*}
$$

Because of (8) it follows that $T(r x)=r T(x)$ for any rational number r.
Using the same argument as in [9], we obtain that $T(a x)=a T(x)$ for any real value of a. Hence T is a linear mapping.

From $\left\|\left(1 / 2^{n}\right) f\left(2^{n} x\right)-f(x)\right\| \leqslant 2 \theta \psi(\|x\|) /(2-\psi(2))$ taking the limit as $n \rightarrow \infty$ we obtain

$$
\begin{equation*}
\|T(x)-f(x)\| \leqslant \frac{2 \theta \psi(\|x\|)}{2-\psi(2)} \tag{9}
\end{equation*}
$$

Claim that T is the unique such linear mapping.
Suppose that there exists another one, denoted by $g: E_{1} \rightarrow E_{2}$, satisfying

$$
\begin{equation*}
\|f(x)-g(x)\| \leqslant \frac{2 \theta_{1} \psi_{1}(\|x\|)}{2-\psi_{1}(2)} . \tag{10}
\end{equation*}
$$

From (9) and (10) we get

$$
\begin{aligned}
\|T(x)-g(x)\| & \leqslant\|T(x)-f(x)\|+\|f(x)-g(x)\| \\
& \leqslant \frac{2 \theta \psi(\|x\|)}{2-\psi(2)}+\frac{2 \theta_{1} \psi_{1}(\|x\|)}{2-\psi_{1}(2)} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\|T(x)-g(x)\|= & \left\|\frac{1}{n} T(n x)-\frac{1}{n} g(n x)\right\| \\
\leqslant & \frac{\psi(n)}{n} \frac{2 \theta \psi(\|x\|)}{2-\psi(2)}+\frac{\psi_{1}(n)}{n} \frac{2 \theta_{1} \psi_{1}(\|x\|)}{2-\psi_{1}(2)} \\
& \text { for every positive integer } n>1
\end{aligned}
$$

However, $\lim _{n \rightarrow \infty}(\psi(n) / n)=0=\lim _{n \rightarrow \infty}\left(\psi_{1}(n) / n\right)$. Therefore $T(x) \equiv g(x)$ for all $x \in E_{1}$.
Q.E.D.

Remarks. (1) If $\psi(t)=t^{p}$ with $0 \leqslant p<1$ then from Theorem 1, we obtain the following result proved in [9].

Theorem 2. Consider E_{1}, E_{2} to be two Banach spaces, and let $f: E_{1} \rightarrow E_{2}$ be a mapping such that $f(t x)$ is continuous in t for each fixed x. Assume that there exist $\theta \geqslant 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leqslant \theta\left[\|x\|^{p}+\|y\|^{p}\right], \quad \text { for any } \quad x, y \in E_{1} .
$$

Then there exists a unique linear mapping $T: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-T(x)\| \leqslant \frac{2 \theta}{2-2^{p}}\|x\|^{p}, \quad \text { for any } \quad x \in E_{1} .
$$

(2) If $p<0$ and

$$
\psi(t)= \begin{cases}0 & \text { if } \quad t=0 \\ t^{p} & \text { if } \quad t>0\end{cases}
$$

then from Theorem 1 we obtain a generalization of Theorem 2 for p a negative real number.

The mapping T defined by Theorem 1 has some remarkable properties.
(i) If $f(S)$ is bounded, where $S=\left\{x \in E_{1} \mid\|x\|=1\right\}$ then T is continuous.

Indeed, this is a consequence of the inequalities

$$
\begin{aligned}
\|T(x)\| & \leqslant\|f(x)\|+\|T(x)-f(x)\| \\
& \leqslant\|f(x)\|+\frac{2 \theta}{2-\psi(2)} \psi(\|x\|) \\
& \leqslant\|f(x)\|+\frac{2 \theta}{2-\psi(2)} \psi(1), \quad \text { for all } \quad x \in S .
\end{aligned}
$$

(ii) In [8] the concept of an asymptotically linear operator is defined.

A mapping $f: E_{1} \rightarrow E_{2}$ is asymptotically linear if there exists a continuous linear operator $u: E_{1} \rightarrow E_{2}$ such that $\lim _{\|x\| \rightarrow+\infty}(\|f(x)-u(x)\| /\|x\|)=0$. In this case we say that u is the asymptotic derivative of f.

Thus, when the operator T defined by Theorem 1 is continuous we have that f is asymptotically linear and T is its asymptotic derivative. Indeed, we have

$$
\lim _{\|x\| \rightarrow+\infty} \frac{\|f(x)-T(x)\|}{\|x\|} \leqslant \frac{2 \theta}{2-\psi(2)} \lim _{\|x\| \rightarrow+\infty} \frac{\psi(\|x\|)}{\|x\|}=0 .
$$

The fact that T is the asymptotic derivative of f is very important since in this case T conserves some properties of f as, for example,
(a) if f is compact then T is compact [8],
(b) if f is an α-contraction with respect to a measure of noncompactness α, then T has the same property [7].

The asymptotic derivative is important in the study of fixed points and in the bifurcation theory $[1,2,8]$.

Also, the fact that T is the asymptotic derivative of f implies that f is quasibounded in the sense of the definition given by Granas in [5].
(iii) Suppose now that $E_{1}=E_{2}=E$, where E is a Banach space ordered by a pointed closed convex cone \mathbf{K}.

If \mathbf{K} is invariant with respect to f, that is, $f(x) \in \mathbf{K}$ for all $x \in \mathbf{K}$, then the operator T defined by Theorem 1 is positive, that is, $T(\mathbf{K}) \subseteq \mathbf{K}$ (in this case T is monotone increasing). Moreover, if in this case T is continuous we have that f is asymptotically linear with respect to \mathbf{K} and T is its asymptotic derivative along \mathbf{K}.

Denote by $r(T)$ the spectral radius of T and suppose that $f(\mathbf{K}) \subseteq \mathbf{K}$.
If f is compact on every bounded set of \mathbf{K}, T is continuous, and $r(T)<1$ then f has a fixed point $x_{*} \in \mathbf{K}$.

This result is a consequence of [2, Theorem 8.8, p. 94].
So, an interesting problem is to study the spectral radius of T.

References

1. H. Amann, Fixed points of asymptotically linear maps in ordered Banach spaces, J. Funct. Anal. 14 (1973), 162-171.
2. H. Amann, "Lectures on Some Fixed Point Theorems," IMPA, Rio de Janeiro, 1974.
3. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
4. R. GER, On functional inequalities stemming from stability questions, in "General Inequalities 6" (W. Walter, Ed.), pp. 227-240. Birkhäuser-Verlag, Basel, 1992.
5. A. Granas, The theory of compact vector fields and some of its applications to topology of functional spaces, I, Rozprawy Mat. 30 (1962), 1-93.
6. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
7. G. Isac, Opérateurs asymptotiquement linéaires sur des espaces localement convexes, Colloq. Math. 46, No. 1 (1982), 67-72.
8. M. A. Krasnoselskit, "Positive Solutions of Operator Equations," Noordhoff, Groningen, 1964.
9. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
10. Th. M. Rassias, Aequationes Math. 39 (1990), 309.
11. W. Rudin, "Fourier Analysis on Groups," Interscience, New York, 1962.
12. S. M. Ulam, "Problems in Modern Mathematics," Chap. VI, Science Editions, Wiley, New York, 1960.
13. S. M. Ulam, "Sets, Numbers, and Universes," selected works, Part III, MIT Press, Cambridge, MA, 1974.
